问题标题:
【如图,一次函数y=kx+b的图像与反比例函数y=a/x的图像交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=根号5,点B的坐标为(1,m),过点A作AH⊥x轴,垂足为H,AH=1/2HO求:在x轴上是否有存在点p使△OAP为】
问题描述:
如图,一次函数y=kx+b的图像与反比例函数y=a/x的图像交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=根号5,点B的坐标为(1,m),过点A作AH⊥x轴,垂足为H,
AH=1/2HO
求:在x轴上是否有存在点p使△OAP为等腰三角形?如存在,请写出点p的坐标
刘石回答:
俊狼猎英团队为您解答
在RTΔOAH中,HO=2AH,OA=√5,∴HO^2+AH^2=5,HO^2+4HO^2=5,∴HO=1,
又A在第三象限,∴A(-2,-1),∴反比例函数解析式为:Y=2/X,∴B(1,2)
①OP=OA=√5,则P(-√5,0)或(√5,0);
②AO=AP=√5,O与P关于AH对称,P(-4,0);
③PO=PA,过P作PQ⊥OA于Q,则Q为OA的中点,∴Q(-1,-0.5),
过Q作QR⊥X轴于Q,QR=0.5,OR=1,则RTΔPQR∽RTΔAOH,
∴PR:QR=AH:OH=1:2,
∴PR=1/2*QR=0.25,∴OP=1+0.25=5/4,
∴P(-5/4,0)
综上所述:P1(-√5,0)、P2(√5,0)、P3(-5/4,0)
点击显示
数学推荐
热门数学推荐