问题标题:
已知数列{an}中,a1=3,a2=5,其前n项和为Sn,满足Sn+2+Sn=2Sn+1+2n+1(1)求数列{an}的通项公式.(2)令bn=2n-1an•an+1,Tn是数列{bn}的前n项和,证明:对任意的m∈(0,16),均存在正整数n0,使得T
问题描述:
已知数列{an}中,a1=3,a2=5,其前n项和为Sn,满足Sn+2+Sn=2Sn+1+2n+1
(1)求数列{an}的通项公式.
(2)令bn=
牛东风回答:
(1)由题意知Sn+2+Sn=2Sn+1+2n+1,得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),即an=an-1+2n-1(n≥3),∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n-1+2n-2+…+22+2+1+2=2n+1,n≥3.检验知n=1...
点击显示
数学推荐
热门数学推荐