问题标题:
【∵mx²+(m-2)x+(m-1)的值域为R∴M≠0时,必有1,M>02,△≥0为什么M≠0时就有后面那两个东西?已知函数F(X)=IN【mx²+(m-2)x+(m-1)】的值域为R,求M取值范围?∵函数F(X)=IN【mx²+(m-2】
问题描述:
∵mx²+(m-2)x+(m-1)的值域为R
∴M≠0时,必有1,M>0
2,△≥0
为什么M≠0时就有后面那两个东西?
已知函数F(X)=IN【mx²+(m-2)x+(m-1)】的值域为R,求M取值范围?
∵函数F(X)=IN【mx²+(m-2)x+(m-1)】的值域为R
∴H(X)=mx²+(m-2)x+(m-1)的值域包含(0,+无穷)的任意实数
M=0时,H(X)=-2X-1,值域为R,符合
∴M≠0时,必有M>0
△≥0
方宏回答:
从该抛物线的图像就很容易知道!
mx²+(m-2)x+(m-1)这个应该是在根号内的吧!
要使其有意义,即mx²+(m-2)x+(m-1)>=0,
那么由图像要使上式恒成立即其图像恒在x轴的上方,那么m>0(保证开口向上)
△
点击显示
数学推荐
热门数学推荐