问题标题:
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°
问题描述:
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()
A.25°
B.30°
C.35°
D.40°
平凡回答:
∵在Rt△ACB中,∠ACB=90°,∠A=25°,
∴∠B=90°-25°=65°,
∵△CDB′由△CDB反折而成,
∴∠CB′D=∠B=65°,
∵∠CB′D是△AB′D的外角,
∴∠ADB′=∠CB′D-∠A=65°-25°=40°.
故选D.
点击显示
数学推荐
热门数学推荐