问题标题:
3(2^2+1)(2^4+1)(2^8+1)…(2^128+1)+1=?
问题描述:
3(2^2+1)(2^4+1)(2^8+1)…(2^128+1)+1=?
胡士强回答:
3=2^2-1
代入3(2^2+1)(2^4+1)(2^8+1)…(2^128+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)…(2^128+1)+1
=(2^4-1)(2^4+1)(2^8+1)…(2^128+1)+1
.
.
=(2^128-1)(2^128+1)+1
=(2^128)²-1+1
=2^256
点击显示
数学推荐
热门数学推荐