问题标题:
【(文做理不做)正方体ABCD-A1B1C1D1中,p、q、r分别是AB、AD、B1C1的中点.那么正方体的过P、Q、R的截面图形是______.(理做文不做)已知空间三个点A(-2,0,2)、B(-1,1,2)和C(-3,0,4)】
问题描述:
(文做理不做)正方体ABCD-A1B1C1D1中,p、q、r分别是AB、AD、B1C1的中点.那么正方体的过P、Q、R的截面图形是______.
(理做文不做)已知空间三个点A(-2,0,2)、B(-1,1,2)和C(-3,0,4),设
k=−
时k
方秋华回答:
(文)如图所示:
正方体的过P、Q、R的截面图形是正六边形PMRSNQ.
下面证明:∵P、Q、R、S分别是AB、AD、B1C1的中点,
∴PQ∥BD∥B1D1∥RS,
∴P、Q、S、R四点共面,
取边BB1的中点M,连接RM并延长交CB的延长线与K点,连接PK.
则△BKM≌△B1RM,∴BK=B1R=BP,
可得Q、P、K三点共线,即M点在平面PQR上,
同理可知N点也在平面PQSR上,
故六点PQNSRM共面.可知其六边长相等.
(理)∵三个点A(-2,0,2)、B(-1,1,2)和C(-3,0,4),
∴a=AB
点击显示
其它推荐