字典翻译 问答 初中 政治 已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上,(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的
问题标题:
已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上,(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的
问题描述:

已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上,

(1)求矩形ABCD的外接圆的方程;

(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆恒相交,并求出相交的弦长最短时的直线l的方程.____

黄绍辉回答:
  【分析】(1)由lAB:x-3y-6=0且AD⊥AB,点(-1,1)在边AD所在的直线上,得到AD所在直线的方程是:y-1=-3(x+1)即3x+y+2=0,求出交点的坐标,得到结果.   (2)根据所给的直线的方程看出直线是一个过定点的直线,判断出定点在圆的内部,证明出直线与圆一定有交点,设PQ与l的夹角为θ,则d=|PQ|sinθ=,得到当θ=90°时,d最大,|MN|最短,再写出直线的方程.   (1)由lAB:x-3y-6=0且AD⊥AB,点(-1,1)在边AD所在的直线上   ∴AD所在直线的方程是:y-1=-3(x+1)即3x+y+2=0   由得A(0,-2)…(3分)   ∴   ∴矩形ABCD的外接圆的方程是:(x-2)2+y2=8…(6分)   (2)直线l的方程可化为:k(-2x+y+4)+x+y-5=0l可看作是过直线-2x+y+4=0和x+y-5=0的交点(3,2)的直线系,即l恒过定点Q(3,2)   由于(3-2)2+22=5<8知点在圆内,   ∴直线与圆恒有交点,   设PQ与l的夹角为θ,则d=|PQ|sinθ=   当θ=90°时,d最大,|MN|最短,   此时l的斜率为PQ斜率的负倒数-,   ∴l:y-2=-(x-3)   即x+2y-7=0   【点评】本题看出直线的方程和圆的方程的综合应用,本题解题的关键是写出圆的方程,再表示出圆的弦,求出最长的弦,本题是一个解析几何的综合题目.
点击显示
政治推荐
热门政治推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 音乐
  • 体育
  • 美术