问题标题:
:求∫sin^2xcos^2xdx和∫x^5根号(1-x^2)dx
问题描述:
:求∫sin^2xcos^2xdx和∫x^5根号(1-x^2)dx
程海亮回答:
∫sin²xcos²xdx
=∫(1/2·2sinxcosx)²dx
=(1/4)∫sin²2xdx
=(1/4)∫(1-cos4x)/2dx
=(1/8)(x-1/4·sin4x)+C
=x/8-(sin4x)/32+C
∫x⁵√(1-x²)dx,令u²=1-x²,2udu=-2xdx
=∫(x²)²·√(1-x²)·(xdx)
=∫(1-u²)²·u·-udu
=-∫u²(1-2u²+u⁴)du
=∫(-u²+2u⁴-u⁶)du
=-u³/3+(2/5)u⁵-(1/7)u⁷+C
=-(1/3)(1-x²)^(3/2)+(2/5)(1-x²)^(5/2)-(1/7)(1-x²)^(7/2)+C
=(-1/105)(15x⁴+12x²+8)(1-x²)^(3/2)+C
点击显示
数学推荐
热门数学推荐