问题标题:
(2008•鄂尔多斯)已知,如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,⊙O经过B,C,D三点,与AB交于另一点E.(1)请你仔细观察图形,连接图中已表明字母的某两点,得到一条新线段,证
问题描述:
(2008•鄂尔多斯)已知,如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,⊙O经过B,C,D三点,与AB交于另一点E.
(1)请你仔细观察图形,连接图中已表明字母的某两点,得到一条新线段,证明它与线段AE相等;
(2)在图中,过点E作⊙O的切线,交AD于点F;
①求证:EF2=FD•FC;
②若AF=DF,求sinA的值.
刘增高回答:
(1)本题可利用点D是AC中点的条件进行求解;连接CE、DE;由∠ABC=90°知:CE必为⊙O的直径;则DE⊥AC,又D是AC的中点,因此DE垂直平分AC,因此CE和AE相等.
(2)欲证EF2=FD•FC,即证=,则证明△CEF∽△EDF即可.
(3)由(1)知:∠A=∠ACE,因此只需在RT△CEF中求出sin∠ACE的值即可.
【解析】
(1)连接CE;
证明:连接DE;
∵∠ABC=90°,
∴CE是⊙O的直径;
∴∠CDE=90°;
又∵AD=CD,
∴AE=CE.
(还可以连接OD,利用中位线定理证AE等于⊙O的直径,或连接BD,利用“直角三角形斜边上的中线等于斜边的一半”证AD=BD,∠A=∠DBA,∠DBA=∠ACE)
(2)①证明:∵EF是⊙O的切线,
∴EF⊥EC;
∴△CEF∽△EDF;
∴=,即EF2=FD•FC.
②∵AF=DF,AD=CD,
∴FD=FC,∴EF2=FC2;
∴=,
∴sin∠ACE=;
又∵EA=EC,
∴∠ACE=∠A;
∴sin∠A=.
点击显示
数学推荐
热门数学推荐