问题标题:
sin负一次方在VB上怎么表达?
问题描述:
sin负一次方在VB上怎么表达?
谭志强回答:
基本函数有:Abs函数Atn函数Cos函数Exp函数Fix函数Int函数Log函数Rnd函数Sgn函数Sin函数Sqr函数Tan函数以下为导出函数函数由基本函数导出之公式Secant(正割)Sec(X)=1/Cos(X)Cosecant(余割)Cosec(X)=1/Sin(X)Cotangent(余切)Cotan(X)=1/Tan(X)InverseSine(反正弦)Arcsin(X)=Atn(X/Sqr(-X*X+1))InverseCosine(反余弦)Arccos(X)=Atn(-X/Sqr(-X*X+1))+2*Atn(1)InverseSecant(反正割)Arcsec(X)=Atn(X/Sqr(X*X-1))+Sgn((X)-1)*(2*Atn(1))InverseCosecant(反余割)Arccosec(X)=Atn(X/Sqr(X*X-1))+(Sgn(X)-1)*(2*Atn(1))InverseCotangent(反余切)Arccotan(X)=Atn(X)+2*Atn(1)HyperbolicSine(双曲正弦)HSin(X)=(Exp(X)-Exp(-X))/2HyperbolicCosine(双曲余弦)HCos(X)=(Exp(X)+Exp(-X))/2HyperbolicTangent(双曲正切)HTan(X)=(Exp(X)-Exp(-X))/(Exp(X)+Exp(-X))HyperbolicSecant(双曲正割)HSec(X)=2/(Exp(X)+Exp(-X))HyperbolicCosecant(双曲余割)HCosec(X)=2/(Exp(X)-Exp(-X))HyperbolicCotangent(双曲余切)HCotan(X)=(Exp(X)+Exp(-X))/(Exp(X)-Exp(-X))InverseHyperbolicSine(反双曲正弦)HArcsin(X)=Log(X+Sqr(X*X+1))InverseHyperbolicCosine(反双曲余弦)HArccos(X)=Log(X+Sqr(X*X-1))InverseHyperbolicTangent(反双曲正切)HArctan(X)=Log((1+X)/(1-X))/2InverseHyperbolicSecant(反双曲正割)HArcsec(X)=Log((Sqr(-X*X+1)+1)/X)InverseHyperbolicCosecantHArccosec(X)=Log((Sgn(X)*Sqr(X*X+1)+1)/X)InverseHyperbolicCotangent(反双曲余切)HArccotan(X)=Log((X+1)/(X-1))/2以N为底的对数LogN(X)=Log(X)/Log(N)所以,sin-1(x)可用Atn(X/Sqr(-X*X+1))来算,即sin-1(0.5)=Atn(0.5/Sqr(-0.5*0.5+1))算出来的结果是弧度制表示的如果想要表示为角度,则把结果乘以180/3.14159
点击显示
数学推荐
热门数学推荐