问题标题:
f(x)=[(3a+2)x+1]/(x-2a).若f(x)的反函数的图象与y=f(x)的图象重合,求a另:为什么y=f(x)图象的对称中心是(2a,3a+2)?怎么找函数的对称中心?
问题描述:
f(x)=[(3a+2)x+1]/(x-2a).
若f(x)的反函数的图象与y=f(x)的图象重合,求a
另:为什么y=f(x)图象的对称中心是(2a,3a+2)?
怎么找函数的对称中心?
高妍妍回答:
令y=[(3a+2)x+1]/(x-2a)
则x=.(2ay+1)/[y-(3a+2)]
所以令y==(2ax+1)/[x-(3a+2)]
两式相等得,a=-2
对称中心求解方法:先给一个定义:若函数f(x)满足f(x)+f(2a-x)=2b,则称(a,b)为其对称中心.你带入就可以验证了.
点击显示
数学推荐
热门数学推荐