问题标题:
lim(n∧2)(x∧(1/n)-x∧(1/(1+n)))n无穷大
问题描述:
lim(n∧2)(x∧(1/n)-x∧(1/(1+n)))n无穷大
梁棣回答:
由题意得到,x>0原式=lim{n^2x^(1/(1+n))[x^(1/n(n+1)-1]}把括号里x^(1/(n+1))提出来=lim{[n/(n+1)]x^(1/(1+n))[x^(1/n(n+1)-x^0]/([(1/n(n+1)]-0])}=lim[n/(n+1)]x^(1/(1+n))lim[(x^t-x^0)/(t-0)]t趋向于0=l...
点击显示
数学推荐
热门数学推荐