问题标题:
【若tanx=2tanπ5,则cos(x-310π)sin(x-π5)=】
问题描述:
若tanx=2tanπ5,则cos(x-310π)sin(x-π5)=
罗均平回答:
tanx=2tanπ/5cos(x-3π/10)/sin(x-π/5)={cosxcos3π/10+sinxsin3π/10)/(sinxcosπ/5-cosxsinπ/5)(分子分母同除以cosx)={cos3π/10+tanxsin3π/10)/(tanxcosπ/5-sinπ/5)={cos3π/10+2tanπ/5sin3π/10)/...
点击显示
其它推荐
热门其它推荐