问题标题:
【△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:(1)(a+b+c)(a+b-c)=3ab(2)sinA=2cosBsinC(3)b=acosC,c=acosB(4)2R(sin2A-sin2C)=(2a-b)sinB有两个结论:甲】
问题描述:
△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:
(1)(a+b+c)(a+b-c)=3ab
(2)sinA=2cosBsinC
(3)b=acosC,c=acosB
(4)2R(sin2A-sin2C)=(
2a-b)sinB
有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题______.
牛秉辉回答:
由(1)(2)为条件,甲为结论,得到的命题为真命题,理由如下:
证明:由(a+b+c)(a+b-c)=3ab,变形得:
a2+b2+2ab-c2=3ab,即a2+b2-c2=ab,
则cosC=a
点击显示
数学推荐
热门数学推荐