问题标题:
【(2014•石狮市质检)如图1,平面直角坐标系中,等腰直角三角板的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边BC=4,经过O、C两点做抛物线y1=ax(x-t)(a为常数,a>0),该抛】
问题描述:
(2014•石狮市质检)如图1,平面直角坐标系中,等腰直角三角板的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边BC=4,经过O、C两点做抛物线y1=ax(x-t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA的解析式为y2=kx(k为常数,k>0).
(1)填空:点A的坐标为______(用含t的代数式表示);
(2)若a=
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2-y1|的值随x的增大而减小,当x≥t+4时,|y2-y1|的值随x的增大而增大,求a与t的关系式.
刘长发回答:
(1)∵三角形ABC是等腰直角三角形,直角边BC=4,
∴AC=4,
∵点C的坐标为(t,0),
∴点A的坐标为(t,4).
故答案为:(t,4);
(2)如图1,过点E作EK⊥x轴于点K.
∵AC⊥x轴,
∴AC∥EK.
∵点E是线段AB的中点,
∴K为BC的中点,
∴EK是△ACB的中位线,
∴EK=12
点击显示
其它推荐