问题标题:
关于数学对数的换底公式推论的问题已知log(2)(3)=a,log(3(7)=b,用a,b表示log(42)(56)因为log(2)(3)=a,则1/a=log(3)(2),又∵log(3)(7)=b,∴log(42)(56)=log(3)(56)/log(3)(42)=log(3)(7)+3·log(3)(2)/log(3)(7)+log(3)(2)+1=ab+3/ab+b+1
问题描述:
关于数学对数的换底公式推论的问题
已知log(2)(3)=a,log(3(7)=b,用a,b表示log(42)(56)
因为log(2)(3)=a,则1/a=log(3)(2),又∵log(3)(7)=b,
∴log(42)(56)=log(3)(56)/log(3)(42)=log(3)(7)+3·log(3)(2)/log(3)(7)+log(3)(2)+1=ab+3/ab+b+1
因为我都四年多没接触过咯···完全忘咯原理是怎样的···请高手帮帮忙仔细的讲解一下下··谢谢··特别是log(3)(56)/log(3)(42)=log(3)(7)+3·log(3)(2)/log(3)(7)+log(3)(2)+1=ab+3/an+b+1···这里完全不明白用的是什么方法解的···刚刚申请的账号··分比较少··请见谅···
纪芳回答:
还记不记得公式,㏒(a)(b)与㏒(b)(a)互为倒数,log(2)(3)=a,则1/a=log(3)(2),这是这一步的原因,
㏒(a)(b)=㏒(c)(b)/㏒(c)(a),所以㏒(42)(56)=㏒(3)(56)㏒(3)(42)
㏒(ab)=㏒a+㏒b,所以log(3)(56)=log(3)(7)+log(3)(8)
㏒a^b(a的b次幂)=b㏒a,所以㏒(3)(8)=3㏒(3)(2)
分母道理一样,你在看看
刘正士回答:
恩··谢谢··这个我明白···我最不明白的是log(3)(42)为什么会=log(3)(7)+log(3)(2)+1``而不是log(3)(7)+log(3)(6)呢?
点击显示
数学推荐
热门数学推荐