Peopleappeartobeborntocompute.Thenumericalskillsofchildrendevelopsoearlyandsoinexorablythatitiseasytoimagineaninternalclockofmathematicalmaturityguidingtheirgrowth.Notlongafterlearningtowalkandtalktheycansetthetablewithimpressiveaccuracy—oneplateoneknifeonespoononeforkforeachofthefivechairs. Soontheyarecapableofnotingthattheyhaveplacedfiveknivesspoonsandforksonthetableandabitlaterwhichthisamountstofifteenpiecesofsilverware.Havingthusmasteredadditiontheymoveontosubtraction.Itseemsalmostreasonabletoexpectthatifachildweresecludedonadesertislandatbirthandreceivedsevenyearslaterheorshecouldenterasecondgrademathematicsclasswithoutanyseriousproblemsofintellectualadjustment.
Ofcoursethetruthisnotsosimple.Thiscenturytheworkofcognitivepsychologistshasilluminatedthesubtleformsofdailylearningonwhichintellectualprogressdepends.Childrenwereobservedastheyslowlygraspedorasthecasemightbebumpedintoconceptsthatadultstakeforgrantedastheyrefusedforinstancetoconcedethatquantityisunchangedaswaterpoursfromashortstoutglassintoatallthinone.
Psychologistshavesincedemonstratedthatyoungchildrenaskedtocountthepencilsinapilereadilyreportthenumberofblueorredpencilsbutmustbecoaxedintofindingthetotal.Suchstudieshavesuggestedthattherudimentsofmathematicsaremasteredgraduallyandwitheffort.Theyhavealsosuggestedthattheveryconceptofabstractnumbers--theideaofalonenessaprerequisitefordoinganythingmoremathematicallydemandingthansettingatable—isitselffarfrominnate.
1.What'sthemainideaaboutthispassage?
A.Theuseofmathematicsinchildpsychology.
B.Trendsinteachingmathematicstochildren.
C.Thedevelopmentofmathematicalabilityinchildren.
D.Thefundamentalconceptsofmathematicsthatchildrenmustlearn.
2.Itcanbeinferredfromthepassagethatchildrennormallylearnsimplecounting——.
A.soonaftertheylearntotalk
B.aftertheyreachsecondgradeinschool
C.bylookingattheclock
D.whentheybegintobemathematicallymature
3.Acco