字典翻译 问答 小学 数学 【如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延】
问题标题:
【如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延】
问题描述:

如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:

探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;

探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=4,CF=2,求DF的长度.

李苏军回答:
  (1)AB=AF+CF.   如图2,分别延长DC、AE,交于G点,   根据图①得△ABE≌△GCE,   ∴AB=CG,   又AB∥DC,   ∴∠BAE=∠G   而∠BAE=∠EAF,   ∴∠G=∠EAF,   ∴AF=GF,   ∴AB=CG=GF+CF=AF+CF;   (2)如图3,分别延长CF、AE,交于G点,   根据CF∥AB得△ABE∽△GCE,   ∴AB:CG=BE:CE,   而BE:EC=1:2,AB=4,   ∴CG=8,   又AB∥FC,   ∴∠BAE=∠G,   而∠BAE=∠EDF,   ∴∠G=∠EDF,   ∴DF=GF,   而CF=2,   ∴DF=CG-CF=8-2=6.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文