问题标题:
如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由.
问题描述:
如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由.
矫宏硕回答:
当D为AC的中点时,∠ADB=∠CDF.理由:过A作AG平分∠BAC,交BD于G,∴∠GAB=∠CAG=∠C=45°,∵AE⊥BD,∴∠ABE+∠BAE=90°,∵∠CAF+∠BAE=90°,∴∠ABE=∠CAF,∴△ABG≌△CAF(ASA),∴AG=CF,当AD=CD时,△AGD...
点击显示
数学推荐
热门数学推荐