问题标题:
如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).(1)求此抛物线的解析式;(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时
问题描述:
如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′∥CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.
陆宁云回答:
(1)由题意得−b2a=1a−b+c=0c=3,解得a=−1b=2c=3.所以,此抛物线的解析式为y=-x2+2x+3;(2)①如图,顶点P为(1,4),CP=12+12=2,BC=32+32=32,BP=22+42=25,又因为CP2+BC2=PB2,所以∠PCB=90°.又...
点击显示
其它推荐