问题标题:
(2014•南通)如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于
问题描述:
(2014•南通)如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.
(1)求线段DE的长;
(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并说明理由;
(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.
韩泽生回答:
由抛物线y=-x2+2x+3可知,C(0,3),令y=0,则-x2+2x+3=0,解得:x=-1,x=3,∴A(-1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;0=3k+b3=b,...
点击显示
其它推荐