问题标题:
如图,在△ABC中,∠ACB=90°,D是AB的中点,E是AC延长线上一点,DE交BC于F,∠A=3∠E.求证:EF=AB
问题描述:
如图,在△ABC中,∠ACB=90°,D是AB的中点,E是AC延长线上一点,DE交BC于F,∠A=3∠E.求证:EF=AB
范承志回答:
证明:取FE的中点G,连接CG.连接CD
设∠E=X
∵∠A=3∠E
∴∠A=3X
∵Rt△ABC,D是AB中点.
∴CD=1/2AB,AD=CD
∴∠A=∠ACD=3X
∵Rt△EFC,G是EF中点
∴CG=1/2EF,CG=EG
∴∠E=∠ECG=X
∵∠CGD=∠E+∠ECG,∠CDG=∠ACD-∠E
∴∠CGD=X+X=2X,∠CDG=3X-X=2X
∴∠CGD=∠CDG
∴CG=CD
∵CD=1/2AB,CG=1/2EF
∴AB=EF
点击显示
数学推荐
热门数学推荐