问题标题:
如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少
问题描述:
如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)当α为多少度时,△AOD是直角三角形?
(3)当α为多少度时,△AOD是等腰三角形?
汤鹏志回答:
(1)△COD是等边三角形,理由如下:
∵△BOC≌△ADC,
∴CO=CD,∠BCO=∠ACD,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠OCD=∠ACB=60°;
∴△COD是等边三角形;
(2)∵△COD是等边三角形,
∴∠COD=60°,
∵△AOD是直角三角形,
∴∠AOD=90°,
∴∠α=360°-110°-90°-60°=100°;
(3)①要使AO=AD,需∠AOD=∠ADO.
∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,
∴200°-α=α-60°
∴α=130°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠AOD=200°-α,∠ADO=α-60°,
∴∠OAD=180°-(∠AOD+∠ADO)=40°,
∴α-60°=40°
∴α=100°;
③要使OD=AD,需∠OAD=∠AOD.
∵200°-α=40°
∴α=160°.
综上所述:当α的度数为130°,或100°,或160°时,△AOD是等腰三角形
点击显示
数学推荐
热门数学推荐