问题标题:
【在平面直角坐标系xoy中,抛物线y=x^2上异于坐标原点O的两不同动点A、B满足AO垂直于BO.求证直线AB过定点】
问题描述:
在平面直角坐标系xoy中,抛物线y=x^2上异于坐标原点O的两不同动点A、B满足AO垂直于BO.求证直线AB过定点
邵保福回答:
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为y=3x^2+2/3然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b...
点击显示
数学推荐
热门数学推荐