问题标题:
设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.若A∩B={2}.求实数a的值若A∪B=A,求实数a范围
问题描述:
设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.若A∩B={2}.求实数a的值若A∪B=A,求实数a范围
孙进生回答:
A∩B={2},x=2是方程x²+2(a+1)x+(a²-5)=0的根.x=2代入4+4(a+1)+(a²-5)=0整理,得a²+4a+3=0(a+3)(a+1)=0a=-3或a=-1x²-3x+2=0(x-1)(x-2)=0x=1或x=2A={x|x=1或x=2}A∪B=A,则B可以为空集,{1},{2}...
点击显示
数学推荐
热门数学推荐