问题标题:
【如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交】
问题描述:
如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQ⊥BC于Q,交折痕于点P.
(1)①当点M分别与AB的中点、A点重合时,那么对应的点P分别是点P1、P2,则P1________、P2________;②当∠OMN=60°时,对应的点P是点P3,求P3的坐标;
(2)若抛物线y=ax2+bx+c,是经过(1)中的点P1、P2、P3,试求a、b、c的值;
(3)在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用P1、P2、P3三点)求出y与x之间的关系来给予说明.
曹志恒回答:
(1)①当M与AB的中点重合时,B与A重合,即E与A重合,则点P为OA的中点,
∵AB=3,
∴P1(0,x2+.
点击显示
其它推荐
热门其它推荐