问题标题:
(2009•绍兴)定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.(1)如图1,若F1:y=x2,经过变换后,得到F2
问题描述:
(2009•绍兴)定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.
(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于______;
②四边形ABCD为()
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c-1),求△ABD的面积;
(3)如图3,若F1:y=x2-x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.
平亮回答:
(1)已知F2的解析式,把已知坐标代入即可得出b的值;(2)在(1)的基础上求出S△ABD;(3)要分情况讨论点C在点A的左边还是右边,作PH⊥AD交AD于点H,则PD+PH=PB+PH,是PB+PH值最小可求出h的最小值.【解析...
点击显示
数学推荐
热门数学推荐