问题标题:
求y''+arctanx=0通解
问题描述:
求y''+arctanx=0通解
孙楠回答:
∵y''+arctanx=0
==>y''=-arctanx
==>y'=-∫arctanxdx=(1/2)ln(1+x^2)-xarctanx+C1*(应用分部积分法,C1*是常数)
∴y=∫[(1/2)ln(1+x^2)-xarctanx+C1]dx
=(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+(C1*-1/2)x+C2(应用分部积分法,C2是常数)
=(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+C1x+C2(令C1=C1*-1/2)
故原方程的通解是y==(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+C1x+C2(C1,C2是常数).
点击显示
数学推荐
热门数学推荐