问题标题:
△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,
问题描述:
△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.
(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.
(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.
(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.
董西广回答:
(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中BC=AC∠BCE=∠ACDCE=CD,∴△BCE≌△ACD,∴BE=AD;(2)...
点击显示
数学推荐
热门数学推荐