问题标题:
已知函数(a>0),且f'(1)=0(1)试用含有a的式子表示b,并求f(x)的单调区间;(2)设函数f(x)的最大值为g(a),试证明不等式:(3)首先阅读材料:对于函数图象上的任意两点,,如果在函数图象上存
问题描述:
已知函数(a>0),且f'(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:
(3)首先阅读材料:对于函数图象上的任意两点,,如果在函数图象上存在点,使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点,,使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.____
常会友回答:
【分析】(1)根据对数函数的定义求得函数的定义域,根据f(x)的解析式求出f(x)的导函数,利用f′(1)=0,代入导函数化简即可得到a与b的关系式,用a表示出b;然后分别令导函数大于0和小于0得到关于x的不等式,求出不等式的解集即可得到相应的x的范围即分别为函数的递增和递减区间;
(2)根据(1)求出函数f(x)的最大值为g(a),构造函数φ(a)=ln()-,利用导数研究该函数的最值,即可证明结论;
(3)假设函数f(x)的图象上存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”,根据斜率公式求出直线AB的斜率,利用导数的几何意义求出直线AB的斜率,它们相等,再通过构造函数,利用导数研究函数的单调性和最值即可证明结论.
(1)f(x)的定义域为(0,+∞),
∵f′(x)=,
∴b=a-1,
∴f′(x)=,
当f′(x)>0时,得-,
∵x>0,a>0,解得0<x<1,
当f′(x)<0时,得-,
∵x>0,a>0,解得x>1,
∴当f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;
(2)证明:g(a)=f(1)=,f′(x)=(x>0),
令φ(a)=ln()-,则φ′(a)=0,
∴φ(a)在(0,+∞)上是减函数,
∴φ(a)<φ(0)=0,即ln()-0,
(3)假设函数f(x)的图象上存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”,
则kAB=+a-1,
f′()=,
又kAB=f′()得,
∴ln=t,(t>1),则lnt=2-,(t>1),此式表示有大于1的实数根,
令h(t)=lnt+-2(t>1),则h′(t)=>0
∴h(t)是(1,+∞)上的增函数,
∴h(t)>h(1)=0,与lnt=2-,(t>1)有大于1的实数根相矛盾,
∴函数f(x)的图象上不存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”.
【点评】此题考查学生会利用导函数的正负求出函数的单调区间,灵活运用中点坐标公式化简求值,掌握反证法进行命题证明的方法,是一道综合题,属难题.
点击显示
政治推荐
热门政治推荐