问题标题:
意大利著名数学家婓波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.为了纪念这个著名的发现,人们
问题描述:
意大利著名数学家婓波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.为了纪念这个著名的发现,人们将这组数命名为婓波那契数列.
(1)这个数列的前2014个数中,有多少个奇数?
(2)现以这组数中的各个数作为正方形的边长构造如下正方形系列:
再分别依次从左到右取2个,3个,4个,5个,…正方形拼成如下长方形并记为①、②、③、④、⑤…
(i)通过计算相应长方形的周长填写表(不计拼出的长方形内部的线段):
周长 | 6 | 10 | ___ | ___ | … |
李建美回答:
(1)这组数列为:1,1,2,3,5,8…,以3个一组,结合题意可知,每组第三个数为偶数,其它两个均为奇数,∵2014÷3=671…1,∴奇数个数为671×2+1=1342+1=1343个.(2)观察各组合图形可知,其周长为最大的正方形...
点击显示
数学推荐
热门数学推荐