问题标题:
【如何证明一元函数可导则必连续】
问题描述:
如何证明一元函数可导则必连续
杜巍回答:
不妨设一元函数为y=f(x),因为该函数可导,令其在X1处的导数为f'(X1),由导数的定义可知(f(X)-f(X1))/(X-X1)在X—>X1时极限为f'(X1),所以f(X)-f(X1)在X—>X1时的极限为f'(X1)×(X-X1)=0,由极限的运算可知f(X)在X—>X1时极限为f(X1),根据一元函数点连续的定义可知f(X)在X1处连续,由于X1可变,这样可证一元函数y=f(x)在给定区间上也连续,命题即证.
点击显示
数学推荐
热门数学推荐