问题标题:
(2009•龙岩)阅读下列材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边
问题描述:
(2009•龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=,BC=;
小明同学的做法是:由勾股定理,得AB=AC=,BC=,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.
李颉思回答:
(1)读懂题意,根据勾股定理作B'C'=,再以B'为顶点作A'B'=5,连接A'C'即可;
(2)知道两三角形三边长度,求出对应比,可看出对应成比例,所以它们相似,进而证出:∠BAC=∠B'A'C'.
【解析】
(1)正确画出△A'B'C'(画出其中一种情形即可)(6分)
(2)猜想:∠BAC=∠B'A'C'(8分)
证明:∵,;
∴,(10分)
∴△ABC∽△A'B'C',
∴∠BAC=∠B'A'C'(13分)
点击显示
数学推荐
热门数学推荐