问题标题:
【设p为大于5的质数,证明:p的4次方≡1(mod24).】
问题描述:
设p为大于5的质数,证明:p的4次方≡1(mod24).
顾文刚回答:
p^4-1=(p^2+1)(p+1)(p-1),因为p是大于5的质数,所以p+1,p-1是两个连续偶数,所以其中必有一个是4的倍数,另一个是2的倍数.所以8|(p+1)(p-1).
另一方面,p+1,p,p-1是三个连续正整数,所以模3的余数不同,所以若p-1、p+1均不是三的倍数,那么p就是3的倍数,但是p是大于5的质数,不会含有3这个因子,矛盾,因此3|(p+1)(p-1),又(3,8)=1,所以24|(p+1)(p-1),所以24|(p+1)(p-1)(p^2+1),即24|p^4-1.
因此p^4≡1(mod24)得证.
点击显示
数学推荐
热门数学推荐