问题标题:
有关函数的一道证明题设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意实数a,b∈R,有f(a+b)=f(a)f(b)恒成立1.证明f(x)恒为正2.证明f(x)为增函数
问题描述:
有关函数的一道证明题
设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意实数a,b∈R,有f(a+b)=f(a)f(b)恒成立
1.证明f(x)恒为正
2.证明f(x)为增函数
韩家德回答:
(1)设x+b>0,x0;
易得f(x+b)>0且f(b)>0
因为f(x+b)=f(x)f(b);
所以f(x)>0
即对于x0;
综合题中所给有
对于R中的x均有f(x)>0;
(2)设a>b,a=b+x;(a,b属于R)
易得x>0;
所以f(x)>1;
又f(a)=f(b+x)=f(b)f(x)
易得f(a)>f(b);
即f(x)是增函数.
点击显示
数学推荐
热门数学推荐