问题标题:
【已知正方体ABCD-A1B1C1D1的棱长为1,正方体内衣球O1与面ABCD,BCC1B1,ABB1A1均相切,正方体内另一球O2与面ADD1A1,A1B1C1D1,CDD1C1均相切,且两球外切,那么两球表面积之和的最小值是(6−33)π(6】
问题描述:
已知正方体ABCD-A1B1C1D1的棱长为1,正方体内衣球O1与面ABCD,BCC1B1,ABB1A1均相切,正方体内另一球O2与面ADD1A1,A1B1C1D1,CDD1C1均相切,且两球外切,那么两球表面积之和的最小值是(6−3
3
(6−3
3
.
和田回答:
根据题意,得
BD1=BO1+O1O2+O2D1=3
点击显示
其它推荐