问题标题:
【(2012•咸宁)如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90】
问题描述:
(2012•咸宁)如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒.
(1)当点B与点D重合时,求t的值;
(2)设△BCD的面积为S,当t为何值时,S=
(3)连接MB,当MB∥OA时,如果抛物线y=ax2-10ax的顶点在△ABM内部(不包括边),求a的取值范围.
胡昆明回答:
(1)∵∠CAO+∠BAE=90°,∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴Rt△CAO∽Rt△ABE.∴CAAB=AOBE.∴2ABAB=t4.∴t=8.(2)由Rt△CAO∽Rt△ABE可知:BE=12t,AE=2.当0<t<8时,S=12CD•BD=12(2+t)(4-t2)=254....
点击显示
其它推荐
热门其它推荐