问题标题:
已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通
问题描述:
已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若
已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2nan,求数列{bn}的前n项和.
宋长新回答:
(Ⅰ)设{an}的公差为d,由题意得(3+3d)2=3(3+12d),得d=2或d=0(舍),…(2分)所以{an}的通项公式为an=3+(n-1)?2=2n+1…(4分)(Ⅱ)bn=2nan=(2n+1)2nSn=3?21+5?22+7?23+…+(2n+1)?2n…①…2Sn=3?22+5...
点击显示
其它推荐
热门其它推荐