问题标题:
把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?
问题描述:
把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?
牟宏伟回答:
设每头牛每天的吃草量为1,则每公顷30天的总草量为:10×30÷5=60;
每公顷45天的总草量为:28×45÷15=84;
那么每公顷每天的新生长草量为(84-60)÷(45-30)=1.6;
每公顷原有草量为:60-1.6×30=12;
那么24公顷原有草量为:12×24=288;
24公顷80天新长草量为24×1.6×80=3072;
24公顷80天共有草量3072+288=3360;
所以有3360÷80=42(头).
答:第三块地可供42头牛吃80天.
点击显示
数学推荐
热门数学推荐