问题标题:
【1×2^2+2×3^2+3×4^2+...+n×(n+1)^2=n×(n+1)×(3n^2+11n+10)/12,用数学归纳法证明】
问题描述:
1×2^2+2×3^2+3×4^2+...+n×(n+1)^2=n×(n+1)×(3n^2+11n+10)/12,用数学归纳法证明
段振华回答:
当n=1时,左边=4,右边=4,等式成立
假设n=k时,
1×2^2+2×3^2+3×4^2+...+k×(k+1)^2=k×(k+1)×(3k^2+11k+10)/12
当n=k+1时,
左边=1×2^2+2×3^2+3×4^2+...+k×(k+1)^2+(k+1)(k+2)^2
=k×(k+1)×(3k^2+11k+10)/12+(k+1)(k+2)^2
=k×(k+1)×(k+2)(3k+5)/12+(k+1)(k+2)^2
=(k+1)(k+2)[k(3k+5)+12(k+2)]/12
=(k+1)(k+2)[3k^2+17k+24]/12
=(k+1)(k+2)[3(k+1)^2+11(k+1)+10]/12
所以n=k+1时也成立
综上,原式成立
点击显示
数学推荐
热门数学推荐