字典翻译 问答 小学 数学 求证1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(n^2)≥3n/(2n+1)
问题标题:
求证1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(n^2)≥3n/(2n+1)
问题描述:

求证1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(n^2)≥3n/(2n+1)

陈贤富回答:
  用数学归纳法   证明   当n=1时,   左边=1=右边   当n=2时   左边=1+1/4=5/4   右边=6/5   左边>右边   假设当n=k,k∈N时成立,则   1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(k^2)≥3k/(2k+1)   当n=k+1时   1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(k^2)+1/(k+1)^2   ≥3k/(2k+1)+1/(k+1)^2   1/(k+1)^2-3/(2k+1)(2k+3)   =[(2k+1)(2k+3)-3(k+1)^2]/(k+1)^2(2k+1)(2k+3)   =(k^2+2k)/(k+1)^2(2k+1)(2k+3)   因为k为正,所以上式大于0   1/(k+1)^2>3/(2k+1)(2k+3)   原式>3k/(2k+1)+3/(2k+1)(2k+3)   =[3k*(2k+3)+3]/(2k+1)(2k+3)   =3(2k²+3k+1)/(2k+1)(2k+3)   =3(2k+1)(k+1)/(2k+1)(2k+3)   =3(k+1)/(2k+3)   =3(k+1)/[2(k+1)+1]   也成立   所以1/1+1/(2^2)+1/(3^2)+1/(4^2)+……+1/(n^2)≥3n/(2n+1)
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文