问题标题:
关于数学的二次根式与一元二次方程.若方程x的平方+2(1+m)x+(3m的平方+4mn+4n的平方+2)=0有实数根.求m、n的值.
问题描述:
关于数学的二次根式与一元二次方程.
若方程x的平方+2(1+m)x+(3m的平方+4mn+4n的平方+2)=0有实数根.求m、n的值.
陆懋荣回答:
∵关于x的方程x^2+2(1+m)x+(3m^2+4mn+4n^2+2)=0有实数根
∴方程x^2+2(1+m)x+(3m^2+4mn+4n^2+2)=0的△≥0
即[2(1+m)]^2-4*1*(3m^2+4mn+4n^2+2)≥0
∴2m^2-2m+4mn+4n^2+1≤0
∵2m^2-2m+4mn+4n^2+1=m^2+4mn+2n+m^2-2m+1=(m+2n)^2+(m-1)^2
∴(m+2n)^2+(m-1)^2≤0
∴m+2n=0且m-1=0
∴m=1,n=-1/2
点击显示
数学推荐
热门数学推荐