问题标题:
【在平面直角坐标系中,圆X^2+y^2-12x+32=0的圆心为Q,过点p(0,2)且斜率为K的直线与圆Q相交于不同的AB点求K的取值范围】
问题描述:
在平面直角坐标系中,圆X^2+y^2-12x+32=0的圆心为Q,过点p(0,2)且斜率为K的直线与圆Q相交于不同的AB点
求K的取值范围
崔国勤回答:
x^2+y^2-12x+32=0
(x-6)^2+y^2=4
圆心是(6,0)
与圆Q相交于不同的AB点
所以圆心到直线距离小于半径
设直线是y=kx+b
因为过点p(0,2),所以b=2
那么|6k+2|/根号(k^2+1)
点击显示
数学推荐
热门数学推荐