问题标题:
在数列{An}中,An小于0(n属于正整数),数列{AnAn+1}是公比为q的等比数列,且满足2AnAn+1+An+1An+2>An+2An+3,则公比Q的取值范围?
问题描述:
在数列{An}中,An小于0(n属于正整数),数列{AnAn+1}是公比为q的等比数列,且满足2AnAn+1+An+1An+2>An+2An+3,则公比Q的取值范围?
时进发回答:
设A1A2=a则:
由于在数列{An}中An小于0
故a>0,且An+1An+2/AnAn+1>0即q>0;
由题中:2AnAn+1+An+1An+2>An+2An+3得
2aq^(n-1)+aq^n>aq^(n+1)得:aq^(n-1)(q^2-q-2)
点击显示
数学推荐
热门数学推荐