问题标题:
正方形ABCD内一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?
问题描述:
正方形ABCD内一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?
李恒峰回答:
依AD为边做等边△ADM连接PM
PA=PB,AM=ADM
∠APM=∠APD=75°
∠PAD=∠PDA=15°
∠BAP==∠PDC=75°
∠PAM=∠PDM=75°
AB=AM,AP=AP
∠△APM≌△ABP
∠MPA=∠APB=75°
BP=AB
同理可证
PC=CD
△PBC是等边三角形
点击显示
数学推荐
热门数学推荐