字典翻译 问答 小学 数学 【如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点。(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,】
问题标题:
【如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点。(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,】
问题描述:

如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点。

(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF的内心在y轴上,若存在,求出点P的坐标;若不存在,说明理由。

高雪回答:
  (1)抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点,∴解得a=1,b=4,∴抛物线解析式为y=x2+4x+3;(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M(-2,-1),直线OD的解析式为y=x,于是设平移...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文