问题标题:
已知函数f(x)=2cos^2ωx+2√3sinωxcosωx+3(ω>0)的最小正周期为π(1)求ω的值(2)求函数f(x)的单调区间、、、
问题描述:
已知函数f(x)=2cos^2ωx+2√3sinωxcosωx+3(ω>0)的最小正周期为π(1)求ω的值
(2)求函数f(x)的单调区间、、、
李镇江回答:
f(x)=2cos^2ωx+2√3sinωxcosωx+3
=cos2ωx+√3sin2ωx+4
=2sin(2ωx+π/6)+4
(1)因为T=2π/2ω=π所以ω=1
(2)f(x)=2sin(2x+π/6)+4
单调增为2kπ-π/2≤2x+π/6≤2kπ+π/2
2kπ-4π/6≤2x≤2kπ+2π/6
kπ-π/3≤x≤kπ+π/6(k∈Z)
单调减为2kπ+π/2≤2x+π/6≤2kπ+3π/2
2kπ+2π/6≤2x≤2kπ+8π/6
kπ+π/6≤x≤kπ+2π/3(k∈Z)
故函数f(x)的单调递增区间:[kπ-π/3,kπ+π/6](k∈Z)
同理可得:函数f(x)的单调递减区间:[kπ+π/6,kπ+2π/3](k∈Z)
点击显示
数学推荐
热门数学推荐