问题标题:
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C=45,DF=3,求⊙O的半径.
问题描述:
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=
胡铂回答:
(1)证明:
(方法一)连接AC.
∵AB是⊙O的直径,且AB⊥CD于E,
由垂径定理得,点E是CD的中点;
又∵M是AD的中点,
∴ME是△DAC的中位线,
∴MN∥AC.
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠MNB=90°,即MN⊥BC;
(方法二)∵AB⊥CD,∴∠AED=∠BEC=90°.
M是AD的中点,
∴ME=AM,即有∠MEA=∠A.
∵∠MEA=∠BEN,∠C=∠A,
∴∠C=∠BEN.
又∵∠C+∠CBE=90°,
∴∠CBE+∠BEN=90°,
∴∠BNE=90°,即MN⊥BC;
(方法三)∵AB⊥CD,∴∠AED=90°.
由于M是AD的中点,
∴ME=MD,即有∠MED=∠EDM.
又∵∠CBE与∠EDA同对AC
点击显示
数学推荐
热门数学推荐