问题标题:
(1)如图1、2,试研究其中∠1、∠2与∠3、∠4之间的数量关系;(2)用你发现的结论解决下列问题:如图3,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.
问题描述:
(1)如图1、2,试研究其中∠1、∠2与∠3、∠4之间的数量关系;
(2)用你发现的结论解决下列问题:
如图3,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.
翟庆林回答:
(1)∵∠3、∠4、∠5、∠6是四边形的四个内角,
∴∠3+∠4+∠5+∠6=360°,
∴∠3+∠4=360°-(∠5+∠6),
∵∠1+∠5=180°,∠2+∠6=180°,
∴∠1+∠2=360°-(∠5+∠6),
∴∠1+∠2=∠3+∠4;
(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;
(3)∵∠B+∠C=240°,
∴∠MDA+∠NAD=240°,
∵AE、DE分别是∠NAD、∠MDA的平分线,
∴∠ADE=12
点击显示
数学推荐
热门数学推荐