问题标题:
若x,y,z∈R+,且x+y+z=xyz,求证:(y+z)/x+(z+x)/y+(x+y)/z>2(1/x+1/y+1/z)
问题描述:
若x,y,z∈R+,且x+y+z=xyz,求证:(y+z)/x+(z+x)/y+(x+y)/z>2(1/x+1/y+1/z)
李景国回答:
通分之后变成要证(y+z)yz+(x+z)xz+(x+y)xy>2(yz+xz+xy)
即(y^2z+yz2)+(xz^2+x^2z)+(x^2y+xy^2)>2(yz+xz+xy)
因为y^2z+yz^2>=2yz*根号下(yz)
而yz=(x+y+z)/x=1+(y+z)/x>1,所以根号下yz也是大于1的,所以2yz*根号下(yz)
大于2yz,所以y^2z+yz^2>2yz,同理可知另外的两个部分,所以不等式成立.
点击显示
数学推荐
热门数学推荐